Wildlife Detection System Reliability and Effectiveness US Hwy 95, Idaho

Marcel P. Huijser*1
Brice Sloan*2
Elizabeth R. Fairbank*1
Fernanda D. Abra*3

*1 WTI-MSU, Bozeman

*2 Sloan Security Technologies, Inc.

*3 University of São Paulo, Brazil

Wildlife-Vehicle Collisions

- 1-2 million large mammal-vehicle collisions/year US
- · Mostly white-tailed deer, mule deer, elk, moose
- Affects:
 - Human safety
 - Injured or dead animals
 - Economic costs

Trend animal-vehicle collisions

1-2 million ungulate-vehicle collisions / year in US (Huijser et al., 2008)

Records: Large Common Species

Crash data:

- Severe crashes
- Large common species: deer, elk, moose
- 10-50% compared to carcass data

Carcass removal data

- Dangerous or a distraction to drivers
- Large common species: deer, elk, moose

Methods not suitable for small or rare species

Ecological Impacts Roads and Traffic

- Loss of wildlife habitat
- 4 2. Road mortality
 - 3. Barrier effect
 - Decrease in habitat quality (disturbance, pollution)
 - Ecological function of verges

4

Reduce Collisions: Ineffective measures

Reduce Collisions: Effective Measures

Standard "ungulate" fence, 80-100%

Animal detection systems

???

Detection systems

Pros

Low upfront costs

Hwy can be left intact / no traffic problems

Do not restrict where wildlife cross hwy

Cons

Risky

Variable effectiveness collision reduction

High long term costs

Do not reduce barrier effect

Fences and Crossing structures

Pros

Can be very effective coll. red.

Robust (predictable)

Can reduce barrier effect

Low long term costs

Cons

Restrict where wildlife cross hwy

High upfront costs

Major Hwy reconstruction /traffic flow

Animal detection systems and driver response

Huijser et al. 2015

The System: Area cover Sloan Security Technologies

Doppler radar
Thermal camera
Cellular antenna

Warning sign

Data processing and storage

Location: Bonners Ferry, Idaho

113 m (371 ft) long 22-37 m wide

Measure System Reliability

Correct detection:

Detection, large mammal is present

False positive:

Detection, large mammal is not present (not visible)

False negative:

No detection, large mammal is present

4 test periods (fall, winter, spring, summer) Each test period is 10 consecutive days

Compare Detection Log to Images Thermal Camera

Radar alarming message starts:
Within about 1 second the warning signs are activated.

Radar alarming message ends: Warning signs are active for another 38-41 seconds

Radar Detections (4x10 days, 3 hrs/day, 120 hrs analyzed)

2 (2.47%) False negatives (deer)

Average radar detection 14.85 s (SD = 7.75)

1.68 detections/hr

Warning signs activated 90.15 seconds per hour (2.5% of the time)

Crossing Time

Speed Radars

Speed by Season

Lowest speed in: winter and at night

Snow and ice covered road

Speed Lights On vs. Off

Winter

ANOVAs (*** P<0.001):

- Season***
- Location (North, System, South)***
- Travel direction***
- Night/Day***
- Lights On/Off***

Greatest effect:

Winter, night: 3.01 mi/h lower lights on vs. off***

Where are the Warning Signs?

Travel time warning signs - outer edges of detection area: 3.2-12.6 seconds

Warning Time for Drivers

Table 7. The warning time before deer or elk set first hoof on the pavement

	Mean	SD	Median	Min.	Max.	N
Deer	35.35	46.05	15.5	0	226	72
Elk	268.44	155.13	330	39	457	9

58-68% of the deer detected sufficiently early for northbound drivers

70-85% of the deer detected sufficiently early for southbound drivers

Need additional signs closer and inside detection area

Stopping Distance – Maximum Vehicle Speed

Conclusions

76-100% detections = large mammals Few (if any) true false positives

Very few false negatives 2 out of 81 (2.4%) deer not detected

58-85% animals detected sufficiently early Improve number and placement signs

Speeds still too high Include maximum posted speed limit

Questions:

Marcel Huijser

E-mail: mhuijser@montana.edu

Phone: +1-406-543-2377

@ Marcel Huijper